翻訳と辞書
Words near each other
・ Koszhar
・ Koszkania
・ Koszki
・ Koszkowo
・ Koszorów
・ Koszowatka
・ Koszoły
・ Koszta Affair
・ Kosztowa
・ Kosztowo
・ Kosztowy
・ Koszul algebra
・ Koszul cohomology
・ Koszul complex
・ Koszul duality
Koszul–Tate resolution
・ Koszutka
・ Koszuty Małe
・ Koszuty, Słupca County
・ Koszuty, Środa Wielkopolska County
・ Koszuty-Huby
・ Koszuty-Parcele
・ Koszwały
・ Koszwice
・ Koszyce
・ Koszyce Małe
・ Koszyce Wielkie
・ Koszyce, Lesser Poland Voivodeship
・ Koszyce, Świętokrzyskie Voivodeship
・ Koszówka


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Koszul–Tate resolution : ウィキペディア英語版
Koszul–Tate resolution
In mathematics, a Koszul–Tate resolution or Koszul–Tate complex is a projective resolution of ''R''/''M'' that is an ''R''-algebra (where ''R'' is a commutative ring and ''M'' is an ideal). They were introduced by as a generalization of the Koszul complex. used the Koszul–Tate resolution to calculate BRST cohomology. The differential of this complex is called the Koszul–Tate derivation or Koszul–Tate differential.
==Construction==
First suppose for simplicity that all rings contain the rational numbers ''Q''. Assume we have a graded supercommutative ring ''X'', so that
:''ab'' = (−1)deg(''a'')deg (''b'')''ba'',
with a differential ''d'', with
:''d''(''ab'') = ''d''(''a'')''b'' + (−1)deg(''a'')''ad''(''b'')),
and ''x'' ∈ ''X'' is a homogeneous cycle (''dx'' = 0). Then we can form a new ring
:''Y'' = ''X''()
of polynomials in a variable ''T'', where the differential is extended to ''T'' by
:''dT''=''x''.
(The polynomial ring is understood in the super sense, so if ''T'' has odd degree then ''T''2 = 0.) The result of adding the element ''T'' is to kill off the element of the homology of ''X'' represented by ''x'', and ''Y'' is still a supercommutative ring with derivation.
A Koszul–Tate resolution of ''R''/''M'' can be constructed as follows. We start with the commutative ring ''R'' (graded so that all elements have degree 0). Then add new variables as above of degree 1 to kill off all elements of the ideal ''M'' in the homology. Then keep on adding more and more new variables (possible an infinite number) to kill off all homology of positive degree. We end up with a supercommutative graded ring with derivation ''d'' whose
homology is just ''R''/''M''.
If we are not working over a field of characteristic 0, the construction above still works, but it is usually neater to use the following variation of it. Instead of using polynomial rings ''X''(), one can use a "polynomial ring with divided powers" ''X''〈''T''〉, which has a basis of elements
:''T''(''i'') for ''i'' ≥ 0,
where
:''T''(''i'')''T''(''j'') = ((''i'' + ''j'')!/''i''!''j''!)''T''(''i''+''j'').
Over a field of characteristic 0,
:''T''(''i'') is just ''T''''i''/''i''!.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Koszul–Tate resolution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.